Refine Your Search

Search Results

Research Report

The Adoption of Digital Twins in Integrated Vehicle Health Management

2023-10-26
EPR2023024
To many, a digital twin offers “functionality,” or the ability to virtually rerun events that have happened on the real system and the ability to simulate future performance. However, this requires models based on the physics of the system to be built into the digital twin, links to data from sensors on the real live system, and sophisticated algorithms incorporating artificial intelligence (AI) and machine learning (ML). All of this can be used for integrated vehicle health management (IVHM) decisions, such as determining future failure, root cause analysis, and optimized energy performance. All of these can be used to make decisions to optimize the operation of an aircraft—these may even extend into safety-based decisions.
Technical Paper

Analysis of the Frequency and Mechanism of Injury to Warfighters in the Under-body Blast Environment

2018-11-12
2018-22-0014
During Operation Iraqi Freedom and Operation Enduring Freedom, improvised explosive devices were used strategically and with increasing frequency. To effectively design countermeasures for this environment, the Department of Defense identified the need for an under-body blast-specific Warrior Injury Assessment Manikin (WIAMan). To help with this design, information on Warfighter injuries in mounted under-body blast attacks was obtained from the Joint Trauma Analysis and Prevention of Injury in Combat program through their Request for Information interface. The events selected were evaluated by Department of the Army personnel to confirm they were representative of the loading environment expected for the WIAMan. A military case review was conducted for all AIS 2+ fractures with supporting radiology. In Warfighters whose injuries were reviewed, 79% had a foot, ankle or leg AIS 2+ fracture. Distal tibia, distal fibula, and calcaneus fractures were the most prevalent.
Technical Paper

Human Shoulder Response to Lateral Impact in Intermediate Loading Conditions Between High-Velocity, Short-Duration and Low-Velocity, Long-Duration

2018-11-12
2018-22-0008
The EuroSID-2re (ES-2re) Anthropomorphic Test Device (ATD) commonly known as the crash test dummy is also used in the military domain to assess the risk of injury of armored vehicles occupants from lateral impact. The loading conditions range from low velocity - long duration impacts (4 m/s - 50 ms) similar to the automotive domain, to high velocity - short duration impacts (28 m/s - 3 ms) corresponding to cases where the panel deforms under an explosion. The human shoulder response to lateral impact was investigated at bounds of the loading condition spectrum previously mentioned, and also at intermediate conditions (14 m/s - 9 ms) in previous studies. The aim of the current study is to provide additional insight at the intermediate loading conditions which are not found in the literature.
Technical Paper

Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions

2017-11-13
2017-22-0006
Under body blast (UBB) loading to military transport vehicles is known to cause foot-ankle fractures to occupants due to energy transfer from the vehicle floor to the feet of the soldier. The soldier posture, the proximity of the event with respect to the soldier, the personal protective equipment (PPE) and age/sex of the soldier are some variables that can influence injury severity and injury patterns. Recently conducted experiments to simulate the loading environment to the human foot/ankle in UBB events (~5ms rise time) with variables such as posture, age and PPE were used for the current study. The objective of this study was to determine statistically if these variables affected the primary injury predictors, and develop injury risk curves. Fifty below-knee post mortem human surrogate (PMHS) legs were used for statistical analysis. Injuries to specimens involved isolated and multiple fractures of varying severity.
Technical Paper

Development of the CAVEMAN Human Body Model: Validation of Lower Extremity Sub-Injurious Response to Vertical Accelerative Loading

2017-11-13
2017-22-0007
Improving injury prediction accuracy and fidelity for mounted Warfighters has become an area of focus for the U.S. military in response to improvised explosive device (IED) use in both Iraq and Afghanistan. Although the Hybrid III anthropomorphic test device (ATD) has historically been used for crew injury analysis, it is only capable of predicting a few select skeletal injuries. The Computational Anthropomorphic Virtual Experiment Man (CAVEMAN) human body model is being developed to expand the injury analysis capability to both skeletal and soft tissues. The CAVEMAN model is built upon the Zygote 50th percentile male human CAD model and uses a finite element modeling approach developed for high performance computing (HPC). The lower extremity subset of the CAVEMAN human body model presented herein includes: 28 bones, 26 muscles, 40 ligaments, fascia, cartilage and skin.
Technical Paper

Warrior Injury Assessment Manikin Oblique Vertical Testing

2018-11-12
SC18-22-0008
Abstract - The Warrior Injury Assessment Manikin (WIAMan) was developed to assess injury in Live Fire Test and Evaluation (LFTE) and laboratory development tests of vehicles and vehicle technologies subjected to underbody blast (UBB) loading. While UBB events impart primarily vertical loading, the occupant location in the vehicle relative to the blast can result in some inherent non-vertical, or off-axis loading. In this study, the WIAMan Technology Demonstrator (TD) was subjected to 18 tests with a 350g, 5-ms time duration drop tower pulse using an original equipment manufacturer (OEM) energy attenuating seat in four conditions: purely vertical, 15° forward tilt, 15° rearward tilt, and 15° lateral tilt to simulate the partly off-axis loading of an UBB event. The WIAMan TD showed no signs of damage upon inspection. Time history data indicates the magnitude, curve shape, and timing of the response data were sensitive to the off-axis loading in the lower extremity, pelvis, and spine.
Journal Article

Using AADL to Assess Architectural Concerns for Cyber Security

2023-03-07
2023-01-0998
We describe how we apply the SAE AS 5506 Architecture and Analysis Design Language (AADL) [4] to reason about contextual and architectural concerns for cyber security. A system’s cyber security certification requires verification that the system’s cyber security mechanisms are correct, non-bypassable, and tamper-resistant. We can verify correctness by examining the mechanism itself, but verifying the other qualities requires us to examine the context in which that mechanism resides. Understanding that context and validating the system’s evolving design against that context is an objective for the Architecture Centric Virtual Integration Process (ACVIP), an AADL-based approach to model and detect system design defects before they become too costly to fix. We describe our work to apply AADL to assess non-bypassability and tamper-resistance. The results of our research - tool plugins for cyber security architectural validation - support system developers today in their ACVIP activities.
Research Report

The Use of eVTOL Aircraft for First Responder, Police, and Medical Transport Applications

2023-09-26
EPR2023020
Advancements in electric vertical takeoff and landing (eVTOL) aircraft have generated significant interest within and beyond the traditional aviation industry. One particularly promising application involves on-demand, rapid-response use cases to broaden first responders, police, and medical transport mission capabilities. With the dynamic and varying public service operations, eVTOL aircraft can offer potentially cost-effective aerial mobility components to the overall solution, including significant lifesaving benefits.
Technical Paper

Application of Desirability Approach to Determine Optimal Turning Parameters

2024-02-20
2024-01-5022
Aluminum alloys are employed in agricultural equipment, aerospace sectors, medical instruments, machinery, automobiles, etc. due to their physical and mechanical characteristics. The geometrical shape and size of the parts are modified in turning operation by using a single-point cutting tool. A356 aluminum alloy is widely used in various engineering sectors, hence there is a necessity to produce A-356 components with quality. The inappropriate cutting parameters used in turning operation entail high production costs and reduce tool life. Box–Behnken design (BBD) based on response surface methodology (RSM) was used to design the experiments such that the experiment trials were conducted by varying cutting parameters like N-spindle speed (rpm), f-feed rate (mm/rev), and d-depth of cut (mm). The multi-objective responses, such as surface roughness (SR) and metal removal rate (MRR) were analyzed with the desirability method.
Technical Paper

Evaluation of Coated and Uncoated Inserts of the Cutting Tool for Improved Machinability of Inconel 825 Alloy

2024-02-23
2024-01-5026
The limitations of commonly used materials such as steel in withstanding high temperatures led to exploring alternative alloys. For instance, Inconel 825 is a nickel-based alloy known for its exceptional corrosion resistance. Thus, the Inconel 825 is used in various applications, including aerospace, marine propulsion, and missiles. Though it has many advantages, machining this alloy at high temperatures could be challenging due to its inadequate heat conductivity, increased strain hardening propensity, and extreme dynamic shear strength. The resultant hardened chips generated during high-speed machining exhibit elevated temperatures, leading to tool wear and surface damage, extending into the subsurface. This work investigated the influence of varying process settings on the machinability of Inconel 825 metal, using both uncoated and coated tools.
Journal Article

Data Reduction Methods to Improve Computation Time for Calibration of Piston Thermal Models

2023-04-11
2023-01-0112
Fatigue analysis of pistons is reliant on an accurate representation of the high temperatures to which they are exposed. It can be difficult to represent this accurately, because instrumented tests to validate piston thermal models typically include only measurements near the piston crown and there are many unknown backside heat transfer coefficients (HTCs). Previously, a methodology was proposed to aid in the estimation of HTCs for backside convection boundary conditions of a stratified charge compression ignition (SCCI) piston. This methodology relies on Bayesian inference of backside HTC using a co-simulation between computational fluid dynamics (CFD) and finite element analysis (FEA) solvers. Although this methodology primarily utilizes the more computationally efficient FEA model for the iterations in the calibration, this can still be a computationally expensive process.
Journal Article

3D Coverage Control and Target Orientation Alignment Using Unmanned Ground Vehicle with Onboard Camera Sensor

2023-04-11
2023-01-0693
This paper addresses a three dimensional (3D) mission domain coverage control problem combined with camera pose control to align towards specific objects of interest. We consider an unmanned ground vehicle (UGV) based on a unicycle kinematics model with an onboard camera sensor based on a visual perspective sensor model. The coverage control problem has been researched in large part for planar domains, which is however not sufficient for real world applications for UGV navigation. Furthermore, in contrast to coverage control of points in the environment, when dealing with objects of interest, it is more amicable to consider that there exist certain orientations to which the camera must align itself to properly cover the object and make ‘sense’ of it. Hence, we seek to derive both UGV coverage control law for 3D mission domains and onboard camera pose control considering target orientation.
Technical Paper

Transforming AADL Models Into SysML 2.0: Insights and Recommendations

2024-03-05
2024-01-1947
In recent years, the increasing complexity of modern aerospace systems has driven the rapid adoption of robust Model-Based Systems Engineering (MBSE). MBSE is a development methodology centered around computational models, which are instrumental in supporting the design and analysis of intricate systems. In this context, the Architecture Analysis and Design Language (AADL) and Systems Modeling Language (SysML) are two prominent modeling languages for specifying and analyzing the structure and behavior of a cyber-physical system. Both languages have their own specific use cases and tool environments and are typically employed to model different aspects of system design. Although multiple software tools are available for transforming models from one language to another, their effectiveness is limited by fundamental differences in the semantics of each language.
Technical Paper

Terrain Streaming for Real-Time Vehicle Dynamics

2024-04-09
2024-01-2659
This paper describes an approach to integrating high-fidelity vehicle dynamics with a high-fidelity gaming engine, specifically with respect to terrain. The work is motivated by the experimental need to have both high-fidelity visual content with high-fidelity vehicle dynamics to drive a motion base simulator. To utilize a single source of terrain information, the problem requires the just-in-time sharing of terrain content between the gaming engine and the dynamics model. The solution is implemented as a client-server with the gaming engine acting as a stateless server and the dynamics acting as the client. The client is designed to actively maintain a locally cashed terrain grid around the vehicle and actively refresh it by polling the server in an on-demand mode of operation. The paper discusses the overall architecture, the protocol, the server, and the client designs. A practical implementation is described and shown to effectively function in real-time.
Technical Paper

Analysis of Geo-Location Data to Understand Power and Energy Requirements for Main Battle Tanks

2024-04-09
2024-01-2658
Tanks play a pivotal role in swiftly deploying firepower across dynamic battlefields. The core of tank mobility lies within their powertrains, driven by diesel engines or gas turbines. To better understand the benefits of each power system, this study uses geo-location data from the National Training Center to understand the power and energy requirements from a main battle tank over an 18-day rotation. This paper details the extraction, cleaning, and analysis of the geo-location data to produce a series of representative drive cycles for an NTC rotation. These drive-cycles serve as a basis for evaluating powertrain demands, chiefly focusing on fuel efficiency. Notably, findings reveal that substantial idling periods in tank operations contribute to diesel engines exhibiting notably lower fuel consumption compared to gas turbines. Nonetheless, gas turbines present several merits over diesel engines, notably an enhanced power-to-weight ratio and superior power delivery.
Technical Paper

Effects of Framing on Tradespace Exploration Decision-Making for Vehicle Design

2024-04-09
2024-01-2660
Tradespace exploration (TSE) describes the activity occurring early in the design process through which stakeholders explore a broad solution space in search of more-optimal alternatives. In doing so, these stakeholders attempt to maximize the utility inherent in the chosen solution while understanding the tradeoffs and compromises that may be required to find an acceptable solution. In the field of vehicle design, tradespaces are often comprised of vast amounts of alternatives which increases the complexity of the decision-making process. Additionally, the number of stakeholders has grown, as decision-makers seek to include more variety in both perspectives and expertise. As such, decision-making stakeholders can often find themselves working at odds and attempting to maximize vastly different objectives in the process. One way to rectify these contrasting viewpoints can be to intentionally introduce a group framing prior to the start of decision making.
Technical Paper

VISION: Vehicle Infrared Signature Aware Off-Road Navigation

2024-04-09
2024-01-2661
Vehicle navigation in off-road environments is challenging due to terrain uncertainty. Various approaches that account for factors such as terrain trafficability, vehicle dynamics, and energy utilization have been investigated. However, these are not sufficient to ensure safe navigation of optionally manned ground vehicles that are prone to detection using thermal infrared (IR) seekers in combat missions. This work is directed towards the development of a vehicle IR signature aware navigation stack comprised of global and local planner modules to realize safe navigation for optionally manned ground vehicles. The global planner used A* search heuristics designed to find the optimal path that minimizes the vehicle thermal signature metric on the map of terrain’s apparent temperature. The local planner used a model-predictive control (MPC) algorithm to achieve integrated motion planning and control of the vehicle to follow the path waypoints provided by the global planner.
Technical Paper

Optimal Use Cases for Electric and Hybrid Tactical Vehicles

2024-04-09
2024-01-2662
In alignment with the U.S. Army's Climate Strategy and the broader trend in automotive technology, there is a strategic shift towards electrification and hybridization of the vehicle fleet. While a major goal of this effort is to mitigate the carbon footprint of the U.S. Army's vehicle operations, this transition also presents an opportunity to harness advancements in automotive electrification. Among the key vehicles in focus are tactical wheeled vehicles, which provide military forces with versatile and rugged transportation solutions for various combat scenarios, ensuring mobility, protection, and adaptability on the battlefield. This study investigates the potential of electrified tactical wheeled vehicles by conducting a survey involving a diverse group of vehicle operators across various ranks within the U.S. Army.
Technical Paper

Numerical Investigation of the Aerodynamic Characteristics of a Missile Geometry at Mach 4

2024-06-01
2024-26-0443
The aim of this paper is to present a numerical analysis of high-speed flows over a missile geometry. The N1G missile has been selected for our study, which is subjected to a high-speed flow at Mach 4 over a range of Angle of attack (AoA) from 0° to 6°. The analysis has been conducted for a 3-dimensional missile model using ANSYS environment. The study contemplates to provide new insights into the missile aerodynamic performance which includes the coefficient of lift (CL) , coefficient of drag (CD) and coefficient of moment (CM) using computational fluid dynamics (CFD). As there is a lack of availability of data for missile geometry, such as free stream conditions and/or the experimental data for a given Mach number, this paper intends to provide a detailed analysis at Mach 4. As the technology is advancing, there is a need for high-speed weapons (missiles) with a good aerodynamic performance, which intern will benefit in reduction of fuel consumption.
X